Musical Training Boosts Brain Growth

Research has revealed significant differences in the gray matter distribution between professional musicians trained at an early age and non-musicians, as presented today at the American Academy of Neurology’s 53rd Annual Meeting in Philadelphia, PA. The musicians in the study had more relative gray matter volume in left and right primary sensorimotor regions, the left more than the right intraparietal sulcus region, the left basal ganglia region and the left posterior perisylvian region, with pronounced differences also seen in the cerebellum bilaterally.

“We were interested to know whether intense environmental demands such as musical training at an early age influenced actual brain growth and development,” comments study leader Gottfried Schlaug, MD, PhD. Results of this cross-sectional study may indicate use-dependent brain growth or structural plasticity of gray matter volume in response to such demands during a critical period of brain maturation. “An alternative explanation may be that these musicians were born with these differences, which may draw them toward their musical gifts.”

Fifteen male professional musicians and 15 age and gender matched non-musicians were included in the study conducted by neurologist Schlaug and Gaser Christian, PhD, of Germany, at the Beth Israel Deaconess Medical Center, Boston. Using a magnetic resonance imaging sequence, they compared high resolution anatomical datasets of the professional musicians’ and non-musicians’ brains on a voxel-by-voxel basis using SPM99 software.

“Musicians typically commence training at an early age, making them ideal subjects for this type of investigation,” notes Schlaug. These presumed cerebral adaptations may not only lead to modifications of functional sensory and motor maps, but may also lead to structural adaptations within the sensorimotor system.

“However,” Schlaug concludes, “additional study is necessary to confirm causal relationships between intense motor training for a long period of time and structural changes in motor and non-motor related brain regions.” Schlaug is continuing this study to identify areas of the brain that are different, and to determine if training and experience create the differences.

Comments are closed.
A830L LCD Digital Multimeter Handheld Ammeter AC DC Voltmeter Tester Multimeter
$10.5 A830L LCD Digital Multimeter Handheld Ammeter AC DC Voltmeter Tester Multimeter picture
uNI-T UT33A Megohmmeter Multimeter Mini Ammeter Multitester DC/ AC Resistance
$14.99 uNI-T UT33A Megohmmeter Multimeter Mini Ammeter Multitester DC/ AC Resistance picture
AC 30A Rectangular Panel Analog Meter Ammeter YS-670 H6B9
$6.47 AC 30A Rectangular Panel Analog Meter Ammeter YS-670 H6B9 picture
AC 20A Analog Ammeter Panel Pointer AMP Current Meter Gauge 85L1-20ATS RH
$6.89 AC 20A Analog Ammeter Panel Pointer AMP Current Meter Gauge 85L1-20ATS RH picture
AN8008 True-RMS Digital Multimeter Voltage Voltmeter Ammeter AC/DC Tester Curren
$22.98 AN8008 True-RMS Digital Multimeter Voltage Voltmeter Ammeter AC/DC Tester Curren picture

Powered by WordPress. Designed by WooThemes