10 March 2014

Camouflage or bright colors? What's better to live long and prosper?

by Will Parker

In nature, bright colors are signals that scream, "Don't eat me!" But how did prey species evolve these characteristics? Now, thanks to a computer simulation of evolving populations of organisms, evolutionary scientists think they know the answer.

In the journal PLOS ONE, researchers at Michigan State University reveal that these color-coded communications evolve over time through gradual steps. Equally interesting, the scientists show how drab-colored, oft-eaten prey adopt garish colors - even though they aren't poisonous.

"In some cases, nonpoisonous prey gave up their protection of camouflage and acquired bright colors," said Kenna Lehmann, who conducted the research. "How did these imitators get past that tricky middle ground, where they can be easily seen, but they don't quite resemble colorful toxic prey? And why take the risk?"

The study contends that they take the risk because of the evolutionary benefits of mimicry. A nontoxic imposter benefits from giving off a poisonous persona, even when the signals are not even close. Predators, engrained to avoid truly toxic prey, react to the impersonations and avoid eating the imposters.

An example of truly toxic animals and their imitators are coral snakes and king snakes. While coral snakes are poisonous, king snakes are not. Even though king snakes are considered imperfect mimics, they are close enough that predators don't bother them.

But why don't all prey have these characteristics, and why don't the imitators evolve to develop poison instead? "Leaving the safety of the cryptic, camouflage peak to go through the exposed adaptive valley over many generations is a dangerous journey," Lehmann explained. "To take the risk of traversing the dangerous middle ground - where they don't look enough like toxic prey - is too great in many cases. Toxins can be costly to produce. If prey gain protection by colors alone, then it doesn't make evolutionary sense to expend additional energy developing the poison."

The results suggest that these communicative systems can evolve through gradual steps instead of an unlikely large single step. This gives insight into how complex signals, both sent and received, may have evolved through seemingly disadvantageous steps.

For the study, the scientists used evolving populations of digital organisms in a virtual world called Avida. Avida is a software environment in which specialized computer programs compete and reproduce. Because mutations happen when Avidians copy themselves, which lead to differences in reproductive rates, these digital organisms evolve, just like living things.

Discuss this article in our forum
Snakes on a brain: slithery reptiles leave lingering imprint on primate genes
Mechanical gears seen in nature for the first time
Worrying and intelligence evolutionarily inseparable
Computer scientists mull origins of evolvability

Source: Michigan State University