New analysis pokes holes in biodiversity’s supposed link to human disease

The vast majority of new, emerging or re-emerging human diseases are caused by pathogens from animals, according to the World Health Organization. But a widely accepted theory of risk reduction for these pathogens is likely wrong, according to a new study by researchers from the Stanford Woods Institute for the Environment.

The dilution effect theorizes that disease risk for humans decreases as the variety of species in an area increases. For example, it postulates that a tick has a higher chance of infecting a human with Lyme disease if the tick has few animal host options. If many other animal hosts had been available to the tick, the tick’s likelihood of being infected and spreading that infection to a human host would go down, according to the theory.

If true, the dilution effect would mean that conservation and public health agendas could be united in a common purpose: to protect biodiversity and guard against disease risk. “However, its importance to the field or the beauty of the idea do not guarantee that it is actually scientifically correct,” said study co-author James Holland Jones.

In the first study to formally assess the dilution effect, Jones, Stanford colleague Dan Salkeld and California Department of Public Health researcher Kerry Padgett tested the hypothesis through a meta-analysis of studies that evaluate links between host biodiversity and disease risk for disease agents that infect humans.

Their analysis, published in the journal Ecology Letters, allowed the researchers to pool estimates from studies and test for any bias against publishing studies with “negative results” that contradict the dilution effect.

They found “very weak support, at best” for the dilution effect. Instead, the researchers found that the links between biodiversity and disease prevalence are variable and dependent on the disease system, local ecology and human social context.

The role of individual host species and their interactions with other hosts, vectors and pathogens are more influential in determining local disease risk, the analysis found.

“Lyme disease biology in the Northeast is obviously going to differ in its ecology from Lyme disease in California,” Salkeld explained. “In the Northeast, they have longer winters and abundant tick hosts. In California, we have milder weather and lots of Western fence lizards [a favored tick host, pictured] that harbor ticks but do not transmit the Lyme disease bacterium.”

So, these lizards should be considered unique in any study of disease risk within their habitat. Or, as Salked put it, “All animals are equal, but some animals are more equal than others.”

Broadly advocating for the preservation of biodiversity and natural ecosystems to reduce disease risk is “an oversimplification of disease ecology and epidemiology,” the study’s authors suggest, adding that more effective control of zoonotic diseases (those transmitted from animals to humans) may require more detailed understanding of how pathogens are transmitted.

Specifically, the researchers recommend that future research focus more on how disease risk relates to species characteristics and ecological mechanisms. They also urge scientists to report data on both prevalence and density of infection in host animals, and to better establish specific causal links between measures of disease risk (such as infection rates in host animals) and rates of infection in local human populations.

For their meta-analysis, the researchers were able to find only 13 published studies and three unpublished data sets examining relationships between biodiversity and animal-to-human disease risk. This kind of investigation is “still in its infancy,” the authors note. “Given the limited data available, conclusions regarding the biodiversity-disease relationship should be regarded with caution.”

“Real progress in this field will come from understanding ecological mechanisms. We need to turn to elucidating these rather than wasting time arguing that simple species richness will always save the day for zoonotic disease risk,” Jones concluded.

Related:
Discuss this article in our forum
Invasive plants can improve biodiversity, ecosystem health
Biodiversity Crunch Threatens Plant Productivity
Threat From Plummeting Biodiversity Qualified
“Catastrophic decline” in freshwater biodiversity

Source: Stanford University

, ,

Comments are closed.
V11544 Australia Avant Card #11544 Biodiversity Study postcard
$0.76 V11544 Australia Avant Card #11544 Biodiversity Study postcard picture
POSTCARD....AUSTRALIA'S BIODIVERSITY...CSIRO.."THE SEA REMEMBERS MAIREENERS"
$2.27 POSTCARD....AUSTRALIA'S BIODIVERSITY...CSIRO..
1999 STEIFF STORK (NABU) NATURE & BIODIVERSITY ASSN, LTD ED #649, EAN 354038
$59.99 1999 STEIFF STORK (NABU) NATURE & BIODIVERSITY ASSN,  LTD ED #649, EAN 354038 picture
NATIONAL GEOGRAPHIC SOCIETY Large Fold-Out Map - BIODIVERSITY Diversity of Life
$0.99 NATIONAL GEOGRAPHIC SOCIETY Large Fold-Out Map - BIODIVERSITY Diversity of Life picture
1995 Press Photo Scenes from PBS series Web of Life: Exploring Biodiversity
$18.88 1995 Press Photo Scenes from PBS series Web of Life: Exploring Biodiversity picture

Powered by WordPress. Designed by WooThemes