Prescription Drug Pollution May Harm Environment

The millions of doses of prescription drugs that Americans swallow annually to combat cancer, pain, depression and other ailments do not disappear harmlessly into their digestive systems, researchers have determined, but instead make their way back into the environment where they may contaminate drinking water and pose a threat to aquatic wildlife.

With this in mind, environmental engineers at The Johns Hopkins University have launched an ambitious research program aimed at identifying the scope of the nation’s prescription drug pollution problems. The researchers recently received a three-year $525,000 U.S. Environmental Protection Agency grant to study pharmaceuticals and antiseptics in drinking water, sewage treatment plants and coastal waters. During an April 10 session at the 223rd national meeting of the American Chemical Society in Orlando, Fla., members of the Johns Hopkins team will unveil two new scientific tools to aid in the investigation of prescription drug pollution. One is a survey of the estimated environmental concentration of the 200 drugs that are prescribed and sold most often. The other is a new, highly sensitive lab test that can detect a minute amount of several prescription drugs in water samples.

Being able to track these drugs is important because many prescription medicines consumed by Americans are not rendered biologically harmless when they pass through the body, Johns Hopkins researchers say. Conventional sewage treatment systems may not remove them, and unused drugs may be flushed down the toilet or thrown into the trash, ultimately ending up in groundwater or surface water, where they may affect aquatic life and drinking water quality.

“This is an important new research area,” says A. Lynn Roberts, who heads the Johns Hopkins team. “Over the past few years, scientists in Europe have found pharmaceuticals in natural waterways, sewage treatment effluents and even in drinking water. Yet until this year there have been virtually no scientific studies examining this issue in the United States. It’s important that we begin to look at this because there are many ways in which pharmaceuticals in the environment could produce undesirable effects on aquatic organisms or even humans.”

As an example, Roberts, an associate professor in the Department of Geography and Environmental Engineering, pointed out that popular antidepressants work by altering levels of a neurotransmitter called serotonin. But serotonin also causes many aquatic creatures to spawn. As a result, pharmaceuticals in the wild could upset natural breeding cycles. In humans, pregnant women are warned not to consume medications that could harm their developing fetus. But what if small amounts of these drugs are present in drinking water? “Pharmaceuticals have high biological activity,” Roberts says. “We may be able to tolerate them for a short period of time, but that doesn’t mean they won’t hurt us-or developing fetuses or aquatic organisms-at higher concentrations or over a long period of time.”

At the American Chemical Society meeting, two members of Roberts’ team will make public some early steps in the effort to determine which pharmaceuticals are escaping into the environment and how much is present. Padma Venkatraman, a postdoctoral fellow at Johns Hopkins, will present estimates of probable environmental concentrations of the 200 most frequently sold and prescribed drugs. She has concluded that anti-depressants, anti-convulsants, anti-cancer drugs and anti-microbials are among the pharmaceuticals most likely to be found at “toxicologically significant levels” in the environment. “We’re trying to make an intelligent guess as to what’s out there in the environment and what’s probably toxic,” Venkatraman says. “We certainly don’t have any evidence that most pharmaceuticals pose a human health risk, although the presence of carcinogens or teratogens even at low concentrations is of potential human health concern.”

Also at the meeting, Michael L. Blumenfeld, a 22-year-old Johns Hopkins undergraduate from Timonium, Md., will present a new method of detecting tiny amounts of several drugs in natural waters, using a lab technique called gas chromatography-mass spectrometry. The test is so sensitive it can detect a gram of pharmaceutical in more than 1 billion liters of water. Blumenfeld’s test, developed in collaboration with Roberts and Venkatraman, will allow researchers in academic labs to test for the presence of particular drugs that may pose a problem in the environment. Blumenfeld, a senior majoring in chemistry, received financial support through a Johns Hopkins Provost’s Undergraduate Research Award.

As the project continues, Johns Hopkins researchers plan to test water before and after it emerges from drinking water treatment plants to determine how effectively pharmaceuticals are being removed. Team members will also conduct tests to see how well pharmaceuticals are being removed at sewage treatment plants in Massachusetts and Maryland. They will also collect samples in the environmentally sensitive upper Chesapeake Bay to check for the presence and concentration of drugs and antiseptics. The researchers will try to determine how efficiently nature’s self-cleansing processes eliminate these man-made pollutants.

Comments are closed.

Inter-Global IG230ELSX Electronic Ballast 120v picture

Inter-Global IG230ELSX Electronic Ballast 120v

$19.90



4 Lamp Ballast For 32W T8 Fluorescent Light Bulb,120 to 277v,wirenut included picture

4 Lamp Ballast For 32W T8 Fluorescent Light Bulb,120 to 277v,wirenut included

$18.00



Espen Four Lamp T8 Electronic Ballast: VE432120MIP picture

Espen Four Lamp T8 Electronic Ballast: VE432120MIP

$12.99



Inter-Global IG13-20EL electronic ballast 120v New Common Aquarium Light Ballast picture

Inter-Global IG13-20EL electronic ballast 120v New Common Aquarium Light Ballast

$11.95



Advance ICN-2S54-N Fluorescent Light Ballast 120/277 Volts 2 Lamp 54W T5 HO picture

Advance ICN-2S54-N Fluorescent Light Ballast 120/277 Volts 2 Lamp 54W T5 HO

$13.93



EnergyPro 2 Lamp T8 Rapid Start Electronic Ballast Model SLE-232-120-LPF picture

EnergyPro 2 Lamp T8 Rapid Start Electronic Ballast Model SLE-232-120-LPF

$13.99



Programmed Start Electronic Ballasts, 120-277 volts, 50/60hz, 2Lamp picture

Programmed Start Electronic Ballasts, 120-277 volts, 50/60hz, 2Lamp

$1.95



Halco 50150 - Circline Fluorescent Ballast (1) Lamp - For FC8T9 - 120 Volt - 22W picture

Halco 50150 - Circline Fluorescent Ballast (1) Lamp - For FC8T9 - 120 Volt - 22W

$15.15



GE Lighting 93896 Electronic Rapid Start Ballast T12 Lamp, 120 V picture

GE Lighting 93896 Electronic Rapid Start Ballast T12 Lamp, 120 V

$14.95



REPLACEMENT BALLAST FOR SUNPARK SL15T electronic circline ballast picture

REPLACEMENT BALLAST FOR SUNPARK SL15T electronic circline ballast

$20.74



Powered by WordPress. Designed by WooThemes